Evidential clustering of large dissimilarity data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidential clustering of large dissimilarity data

In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between objects correspond to higher degrees of conflict between the associated mass functions. In this paper, we present severa...

متن کامل

Clustering in ordered dissimilarity data

This paper presents a new technique for clustering either object or relational data. First, the data are represented as a matrix D of dissimilarity values. D is reordered to D∗ using a visual assessment of cluster tendency algorithm. If the data contain clusters, they are suggested by visually apparent dark squares arrayed along the main diagonal of an image I (D∗) of D∗. The suggested clusters...

متن کامل

PoClustering: Lossless Clustering of Dissimilarity Data

Given a set of objects V with a dissimilarity measure between pairs of objects in V , a PoCluster is a collection of sets P ⊂ powerset(V ) partially ordered by the ⊂ relation such that S ⊂ T iff the maximal dissimilarity among objects in S is less than the maximal dissimilarity among objects in T . PoClusters capture categorizations of objects that are not strictly hierarchical, such as those f...

متن کامل

CEVCLUS: Constrained evidential clustering of proximity data

We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the DempsterShafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partiti...

متن کامل

Topographic Mapping of Large Dissimilarity Data Sets

Topographic maps such as the self-organizing map (SOM) or neural gas (NG) constitute powerful data mining techniques that allow simultaneously clustering data and inferring their topological structure, such that additional features, for example, browsing, become available. Both methods have been introduced for vectorial data sets; they require a classical feature encoding of information. Often ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge-Based Systems

سال: 2016

ISSN: 0950-7051

DOI: 10.1016/j.knosys.2016.05.043